
Oasis.AI Whitepaper
Version 1.0

1 Introduction
Over the past decade, machine learning has experienced a rapid growth in popularity, permeating
various aspects of daily life. As the demand for compute resources for machine learning
tasks continues to surge, existing centralized inference mechanisms are being pushed to their
limits. Simultaneously, supply chain shortages have led to year-long back orders on cutting
edge hardware while hundreds of thousands of users already have mid-tier to high-end excess
compute sitting idle. By connecting this unused capacity via a distributed network, a higher
global compute efficiency can be achieved. This approach not only ensures cost-efficiency
but also delivers reliability and performance to a broader spectrum of users. The Oasis.ai
machine learning inference platform offers distributed Machine Learning as a Service (MLaaS)
capabilities. The platform enables individuals to securely execute machine learning inference
tasks with an expanding repertoire of popular models such as Llama [1] and Stable Diffusion
XL [2], among others.

2 WebGPU-based Machine Learning
Despite the clear benefits of a distributed AI inference platform, the implementation of such
a network requires a standardized system for all potential compute nodes to execute. Existing
solutions have levered Docker as a means of deploying work units to service providers, offering
decentralized physical infrastructure networks (DePIN), which presents its own issues. Despite
the flexibility that this approach offers, it comes at the cost of ease of setup and deployment as
well opening up additional attack vectors via running unverified code. By focusing only on ML
inference, rather than generic compute, a custom platform can be implemented in the browser
by leveraging targeted APIs.

Utilizing existing WebGPU APIs for ML represents a significant advancement for large scale,
distributed, edge compute by exposing low-level graphics and general purpose computation
[3]. Via these APIs, web applications are able to harness the full power of modern GPUs
for accelerated computing tasks, which includes machine learning inference. This advancement
allows for the flexibility to run larger, previously desktop-bound, machine learning model in
an existing, proven, browser environment. Moreover, WebGPU offers cross-platform support for
hardware acceleration, allowing for consistent performance and implementation across a variety
of devices. Thus, WebGPU is well-poised as a tool for browser-based MLaaS for making inference
accessible for a wide range of applications.

The Oasis.ai platform leverages WebGPU technology to enable efficient and scalable distributed
machine learning within a web browser environment. Providers are able to exchange access to
their WebGPU compute for Oasis.ai token. Specifically, service providers run inference tasks
with WebGPU on behalf of users in exchange for token. The emergence of browser-based machine
learning signifies a substantial leap in the access of AI technologies, offering low-latency and
flexible processing directly within existing web applications.

1

3 Task Allocation
Inference tasks can be allocated to service providers in exchange for tokens. Specifically, this
model involves users exchanging tokenized tasks or requests in the form of digital assets, which
can serve as a tradable unit of value for the execution of a specific machine learning model by
service providers. Machine learning service providers can participate in the network by offering
their computational resources to run inference on an input, and they are rewarded with tokens
in exchange.

A significant challenge in designing a task-allocation system is that determining the optimal task
allocation solution is NP-Hard [4]. We implement the differential privacy-based combinatorial
double auction algorithm proposed by Zhai et al. between users and service providers, and trades
are executed when the bid price of a user matches the seller’s ask price [5].

4 Combinatorial Double Auction Algorithm
Consider a vector of service providers 𝑹 = ⟨𝑅1, 𝑅2, ..., 𝑅𝑛⟩ and inference tasks 𝑻 =
⟨𝑇1, 𝑇2, ..., 𝑇𝑚⟩. Additionally, each inference task should be represented as 𝑇𝑖 =
⟨𝐶𝑖,1𝑡1, 𝐶𝑖,2𝑡2, ...𝐶𝑖,𝑘𝑡𝑘⟩ where 𝐶𝑖,𝑗 represents the demand for each of the 𝑘 inference task types
(e.g. each of the machine learning model types). Let 𝑣𝑖 represent the adjusted valuation of
computing the sub-task 𝑇𝑖, which reflects factors imposed by the demand such as the slashing
mechanism discussed in Section 6. Let 𝑺 be the set 𝑆𝑗 = (𝒔𝒋, 𝑤𝑗, 𝑐𝑗) where 𝒔𝒋 represents the 𝑗-
th resource (e.g. CPU processing power). 𝑤𝑗 represents the maximum number of units of service
that device 𝑗 can provide for each resource type 𝑠𝑗,𝑖 and 𝑐𝑗 represents the true adjusted valuation
of the 𝑖-th device’s cost.

We can construct a matrix 𝐴 ∈ 𝑀{𝑚×𝑛}(𝟙) such that

𝐴𝑖,𝑗 = {
1 𝑅𝑗 accepts the 𝑖 -th task
0 else

Indeed, ∑𝑚
𝑘=1 𝐴𝑘,𝑗 ≤ 1, for 1 ≤ 𝑗 ≤ 𝑛 since a model can strictly accept only one model inference.

Let the additional cost function be defined by 𝑒𝑖 = 𝑡𝑖 log𝛼(𝑡𝑖) + 𝛽 where 𝛼, 𝛽 ∈ ℤ+. Then, a
utility function for users can be defined as

utility𝑢
𝑖 = {𝑣𝑖 − (trade price𝑖 + 𝑒𝑖) if the 𝑖 -th task wins

0 else

Similarly, the utility function for service providers can be defined as

utility𝑝
𝑗 = {trade price𝑗 − ∑𝑛

𝑖=1 𝐴𝑖,𝑗 if the 𝑗 -th task wins
0 else

We must optimize the function max(∑𝑚
𝑖=1 utility𝑢

𝑖 − ∑𝑛
𝑗=1 utility𝑝

𝑗) such that:

∑
𝑚

𝑖=1
𝐴𝑖,𝑗 ≤ 𝑤𝑗 For each user device

𝐴𝑖,𝑗 ∈ [0, 1], ∀𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛]

2

If the provider fails to complete the task within the alloted time, the task will be inserted back
into the auction with a higher demand 𝑣𝑖.

4.1 Pricing Model

We introduce a pricing model as a fair-enough price-determining mechanism to motivate
providers and users to participate. We adopt the same pricing model as Zhai et. al. (2018) which
considers a fixed allocation matrix. Then, the winning resources of each user will be as follows:

resource𝑖 = ∑ 𝐴𝑖,𝑗 × ∑ 𝑠𝑗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

The following two equations are the per unit price for tasks and providers accordingly.

price (task per unit)𝑖 =
𝑣𝑖

∑ 𝑥𝑖,𝑗* ∑ 𝑠𝑗
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

price (provider per unit)𝑗 =
𝑐𝑗

∑ 𝑠𝑗
, 1 ≤ 𝑗 ≤ 𝑛

4.2 Algorithm

We present a polynomial time combinatorial algorithm for Equation 1, which is NP-Hard.
Following Zhai et. al. (2018) and Jiang et. al. (2021), our scheduling mechanism invokes a bid
density (𝑏𝑑) mechanism to push bids for efficient allocations. Let 𝑀𝑖 represent the compute
power of 𝑅𝑖, which will be determined by benchmarking. Let 𝚿 be a constant representing the
ability for a service provider to complete a task determined by an algorithm that considers GPU
compute power, CPU compute power, etc. and let 𝑀𝑖, 𝑏𝑑𝑡𝑎𝑠𝑘

𝑖 , and 𝑏𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟
𝑖 be defined as:

𝑏𝑑𝑡𝑎𝑠𝑘
𝑖 =

⎷
√√
√

∑
𝑘

𝑗=1
𝐶2

𝑖,𝑗 + 𝑣2
𝑖

𝑏𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟
𝑖 =

⎷
√√
√

∑
𝑘

𝑗=1
1/𝑠2

𝑖,𝑗 + ∑
𝑗=1

Ψ𝑗
𝑖,𝑗

Setting the bidding density for service providers in this manner heavily incentivize providers
that are able to run WebGPU inference on relatively large models such as Llama and SDXL.

The main combinatorial double auction resource allocation algorithm is presented below. As
mentioned earlier, this auction mechanism is utilized to determine fair prices for users and
service providers. An important qualification is that only users are able to influence the auction
by increasing 𝑣𝑖 through bidding more token, which increases the bidding density. However,
providers themselves are not able to set the price of their own bid. Instead, it is computed within
the platform and a fair price is assigned to the provider.

3

Prices(𝑁tasks, 𝑁providers, 𝐵providers, 𝐵tasks):
1 Users and service providers send their bids to the auctioneer.

2 Compute a sorted list of bids of tasks and providers

3
Normalize components of 𝚿 and normalize 𝒔 ∈ 𝑀(ℝ), 𝐶 and
𝑣 to be in the range (0, 1)

4
𝐺 ← ⟨𝑏𝑑𝑡𝑎𝑠𝑘

𝑖 ⟩ sorted in non-increasing order 𝐻 ← ⟨𝑏𝑑𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟
𝑖 ⟩

sorted in non-increasing order

5 𝑖 = 𝑗 ← 1

6 Flag Price:

7 𝑘 ← 1

8 𝑋 ∈ 𝑀𝑚,𝑛(𝟘) // Allocation Matrix

9 𝑃 ∈ 𝑀𝑚,𝑛(𝟘) // Price Matrix

10 if (𝐶 = 0) ∨ (𝑣𝑖 < 𝑞𝑖):

11 𝑘 += 1

12 𝑋[𝑖, 𝑗] = 𝑞𝑖

13 𝑃 [𝑖, 𝑗] = (Pr(provider per unit)𝑗 + Pr(task per unit)𝑖)/2

14 if ¬(Pr(provider per unit)𝑗 ≤ 𝑃[𝑖, 𝑗] ≤ Pr(task per unit)𝑖):

15 𝑃 [𝑖, 𝑗] = Pr(provider per unit)𝑗

16 𝑣𝑖 ← 𝑣𝑖 − 𝑞𝑖

17 𝑞𝑖 ← 0

18 If all of the requests of a single user are not satisfied:

19 𝑗 += 1

20 GOTO Price

21 If all of the requests of a single user are satisfied:

22 Task trade price𝑖 = ∑𝑛
𝑚=1 𝑃𝑖,𝑚 ∗ 𝒔𝒋 ∗ 𝐴𝑘,𝑗

23 Device trade price𝑗 = ∑𝑛
𝑛=1 𝑃𝑛,𝑗 ∗ 𝒔𝒋 ∗ 𝐴𝑛,𝑗

24 𝑖 += 1

25 GOTO Price

26 If all user requests are satisfied:

27 return Task trade price, Device trade price

5 Slashing Mechanism
One of the most established security mechanisms are Zero-Knowledge Succinct Non-Interactive
Arguments of Knowledge (zk-SNARKs). However, zkML is impractical for large machine
learning inference tasks (e.g. LLMs, Image Generation, etc.) (see Table 1) [6]. Additionally, zk-
SNARKS also have costly memory requirements and high service costs. For instance, the memory
consumption for generating an arithmetic circuit in a zk-SNARK for the 7 billion parameter
Llama model is in the order of terabytes, if not petabytes [6]. Specifically, the proof generation

4

time is a significant limitation, which is why we utilize optimize fault proofs. In this, we design
a system to incentivize desired behavior to mitigate potentially invalid results.

Optimistic Proof zkML

Model size Arbitrary size Small/Limited

Proof Type Fraud Proof zk-SNARK (validity proof)

Proof Speed Delayed due to challenges Quick/No delays

Security crypto-economic security ZK/Cryptographic

Table 1: Tradeoffs for existing inference verification techniques [6]

We utilize fault proofs to protect users from misbehaving service providers in a slashing
mechanism similar to that of Ethereum’s Proof-of-Stake model. In this optimistic system, users
are able to challenge the results of an inference. Additionally, the Oasis.ai system will also
randomly initiate challenges. While a challenge is running, the challenged provider is temporarily
barred from accepting tasks. We use a method similar to [7] and the interactive bisection scheme
in [8] to determine the validity of the challenger’s claim. Since the inference can be represented
as a directed acyclic graph (DAG), we can fix the source of randomness to produce deterministic
inference processes. Then, a single service provider is assigned to recompute each layer of the
node in the topological order of the model DAG. Note that using multiple providers to verify
the challenged inference requires full trust since 1-of-𝑛 dishonest parties nullifies the correctness
of the proof. If at any point there is a discrepancy between the challenged inference and the
recomputed inference, the challenger and service providers are rewarded and the challenged
service provider is punished. Punishments result in nefarious providers being removed from the
network with prejudice and the invalid transaction being reversed. The user’s task will then be
returned to the auction with higher priority.

5

References
[1] H. Touvron et al., “LLaMA: Open and Efficient Foundation Language Models.” 2023.
[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image

Synthesis with Latent Diffusion Models.” 2022.
[3] D. Jackson, “Next-generation 3D Graphics on the Web — webkit.org.” 2017.
[4] C. Xu and W. Song, “Intelligent Task Allocation for Mobile Crowdsensing With

Graph Attention Network and Deep Reinforcement Learning,” IEEE Transactions on
Network Science and Engineering, vol. 10, no. 2, pp. 1032–1048, 2023, doi: 10.1109/
TNSE.2022.3226422.

[5] Y. Zhai, L. Huang, L. Chen, N. Xiao, and Y. Geng, “COUSTIC: Combinatorial Double
auction for Task Assignment in Device-to-Device Clouds.” 2018.

[6] K. D. Conway, C. So, X. Yu, and K. Wong, “opML: Optimistic Machine Learning on
Blockchain.” Accessed: Mar. 02, 2024. [Online]. Available: http://arxiv.org/abs/2401.17555

[7] S. Bhat et al., “SAKSHI: Decentralized AI Platforms.” 2023.
[8] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, “Arbitrum:

Scalable, private smart contracts,” in 27th USENIX Security Symposium (USENIX Security
18), Baltimore, MD: USENIX Association, Aug. 2018, pp. 1353–1370. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner

6

https://doi.org/10.1109/TNSE.2022.3226422
https://doi.org/10.1109/TNSE.2022.3226422
http://arxiv.org/abs/2401.17555
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner

	Introduction
	WebGPU-based Machine Learning
	Task Allocation
	Combinatorial Double Auction Algorithm
	Pricing Model
	Algorithm

	Slashing Mechanism
	References

